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ABSTRACT

We present three-dimensional analysis of two-dimensional guided resonances in photonic
crystal slab structures. This analysis leads to a new understanding of the complex spectral
properties of such systems. Specifically, we calculate the dispersion diagrams, the modal
patterns, and transmission and reflection spectra of these resonances. From these calculations, a
key observation emerges involving the presence of two temporal pathways for transmission and
reflection processes. Using this insight, we introduce a general physical model that explains the
essential features of complex spectral properties. Finally, we show that the quality factors of
these resonances are strongly influenced by the symmetry of the modes, and the strength of the
index modulation.

INTRODUCTION

Photonic crystal slabs are a particularly important class of photonic crystal structures. A
photonic crystal slab consists of a two-dimensionally periodic index contrast introduced into a
high-index guiding layer (inset in Figure la). These structures support in-plane guided modes
that are completely confined by the slab without any coupling to external radiations. These
guided modes allow the control of light within the layer at the wavelength scale. Therefore, the
slab structure may provide the basic substrate for large-scale on-chip integration of photonic
components and circuits. [1-8]
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Figure 1. The band structure for (a) even and (b) odd modes in a photonic crystal slab. The
structure of the slab is shown in the inset of (a), and consists of a square lattice of air holes with a
radius of 0.2a introduced into a high-index dielectric slab with a dielectric constant of 12 and a
thickness of 0.5a. Even and odd modes are defined with respect to the mirror parallel to the slab.
The gray regions are the continuum of radiation modes. Solid lines outside the gray region are
guided modes. Solid lines within the gray region are guided resonances.
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In addition to in-plane wave guiding, photonic crystal slabs can also interact with external
radiations in complex and interesting ways. Of particular importance here is the presence of
guided resonances in the structures. [9-15]. Similar to the guided mode, a guided resonance also
has its electromagnetic power strongly confined within the slab. Unlike the guided mode,
however, the resonance can couple to external radiations. Therefore, guided resonances can
provide an efficient way to channel light from within the slab to the external environment. This
property has been exploited in the designs of novel photonic-crystal based light-emitting diodes
[11, 16], lasers [ 17, 18], and directional output couplers [19]. In addition, the guided resonances
can significantly affect the transmission and reflection of externally incident light, resulting in
complex resonant line shapes that are useful in filter applications. [9][201

The purpose of this paper is to present a novel analysis of guided resonances in photonic
crystal slabs. Our analysis elucidates a variety of complex spectra phenomena associated with
these resonances. We compute the dispersion diagrams and the cigen-field distributions of these
resonances with a plane-wave band structure computation method. We then perform finite-
difference time-domain simulations to detenirine the transmission and reflection spectra, and to
visualize in real time the interaction between the resonances and the incident light. Emerging
from these simulations is a key insight that involves the presence of two temporal pathways in
the transmission and reflection processes. Based upon this insight, we introduce a general and
intuitive theory, which uses only interference and energy conservation arguments, to explain all
the complex features in the spectral line shapes. Finally, we analyze the angular and the
structural dependence of the guided resonances, and we show the wide ranges of tunability in
quality factors for these resonances.

BAND STRUCTURE OF THE GUIDED RESONANCES

Since the spectral features of the guided resonances in a photonic crystal slab will turn
out to depend critically on their modal properties, it is helpful to begin our discussion with a brief
overview of the band structure properties of these resonances. Throughout this paper, our model
system will consist of a square lattice of air holes introduced into a dielectric slab (inset in Figure
1). The thickness of the slab is 0.5a, and the radius of the holes is 0.2a, where a is the lattice
constant. The dielectric constant of slab is 12, which roughly corresponds to the dielectric
constant of Si or GaAs at optical wavelengths. For such a structure, because of the translational
symmetries within the plane of the slabs, the physical properties of the slabs can be described by
a band diagram that relates the frequencies of all the three-dimensional modes to the in-plane
wave vectors [I][2]. The band diagram can be computed by a pre-conditioned conjugate gradient
minimization of a Maxwell operator expanded on a plane wave basis [211.

For our model system as shown in the inset of Figure la, the band diagram for the even
and odd modes are plotted in Figure I (a) and (b), respectively. Modes below the light line are
bona-fide guided modes with infinite lifetime, in spite of the large index contrast introduced by
the air holes. The guided modes above the light line, on the other hand, can couple to radiation
modes and possess a finite lifetime. These modes therefore become guided resonances. They are
called "guided" since they are closely related to the guided mode bands in a uniform slab, and
should therefore retain significant portions of the electromagnetic power within the dielectric
slab.

The presence of the air holes in the crystal also generates a discrete translational and
rotational symmetry, and thereby dictates the degeneracy of the bands. At most k-points, (except
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Figure 2. The frequencies of the resonances at F as a function of the radius of the holes in
the slab. The slab has a dielectric constant of 12 and a thickness of 0.5a. The modes are four-fold
degenerate in the structure without holes. For structures with holes, the four-fold degeneracy is
broken, resulting in a pair of doubly degenerate states, and two singly degenerate states.

for the special points F, X and M), the bands are singly degenerate. At the F point, the point
group supports a two-dimensional irreducible representation, allowing for the existence of
doubly degenerate states. Therefore, the four-fold degeneracy at the F point for a uniform slab
splits in the presence of the air holes, as clearly seen in Figure 2, where we plot the frequencies
of the resonant modes at r as a function of the radius of the holes. As the radius of the holes
increases, the modes separate into a pair of doubly degenerate states and two singly degenerate
states.

For the crystal structure with r = 0.20a, we show the power density distribution of the
first resonant band at F in Figure 3. The mode is singly degenerate with a frequency
o) = 0.35. (2ic/a). Since any singly degenerate mode should belong to a one-dimensional
irreducible representation, the power density distribution of the mode should possess the full
symmetry of the lattice. This can be seen in Figure 3(a), which shows the spatial distribution of
the power density on a slice parallel to the slab. Also, the resonant nature of this mode is
exhibited in Figure 3(b), which shows that the power density is strongly confined within the slab.

(a) Horizontal cut (b) Vertical cut

Power density in E field

0) max

Figure 3. Spatial distribution of the power density in electric fields on (a) a horizontal slice,
and (b) a vertical slice, for the lowest-order singly degenerate resonance at F. The lines indicate
the position of the interface between dielectric and air. The white color represents low intensity
and the dark color represents high intensity, as indicated by the color bar at the bottom of the
figure.
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The band structure computations thus allow us to examine the dispersion, the field
distributions, and the symmetry properties of the guided resonances. For a complete
understanding of these resonances, however, we must also study their lifetimes, and their
interactions with external radiations. These questions will be addressed in the next session by
finite-difference time-domain simulations.

TIME-DOMAIN ANALYSIS OF THE GUIDED RESONANCES

Computational methods

The computational domain for our finite-difference time-domain study [22] includes a
single unit cell of the crystal. On the top and bottom surfaces of the computational domain, we
impose the PML absorbing boundary conditions [23]. For the remaining four surfaces that are
perpendicular to the slab, we impose a Bloch periodic boundary condition on the electric fields
E:

E(r+a) = "E(r)()

Here, a is a lattice vector of the square lattice, and k is a wavevector that is parallel to the slab.
We note that by Bloch's theorem, k is a conserved quantity in the scattering process.

We generate an incident plane wave by placing a source plane consisting of oscillating
dipoles near the top surface of the computational domain. For two dipoles in the plane that are
separated by a distance vector r, we set the relative phase between them to be e"'. Therefore, in
combination with the boundary condition as specified in Eq. (1), the source plane generates an
incident plane wave with a parallel wavevector component k. In addition, the amplitudes of the
dipole moments are set to oscillate at a constant frequency with a Gaussian profile to create a
temporal pulse. This computational setup thus allows us to calculate the response functions of
the structure at a given k for a wide range of frequencies in a single simulation run. (Notice that
this is not a constant incidence angle calculation. At a fixed parallel wavevector k, the incidence
angle changes with frequency.)

The transmission and reflection spectra are obtained by first Fourier transforming the
recorded time sequence of field amplitudes at their respective monitor points. (We note that
monitoring the field amplitudes only at the two monitor points is valid for the frequency range
w< 2rcca, where no diffraction occurs.) The spectra are then normalized with respect to the
incident pulse that is calculated in an identical simulation in vacuum without the slab structure.
For reflection, the normalization step is preceded by subtracting the incident pulse.

Transmission and reflection spectra

Using the computational setup as described in Section 111. 1, we calculate the transmission
and reflection coefficients at various k-points for the structure as shown in Figure I. In the case
where k = i. 0.2. 2T/a, the calculated spectra for the s-polarized incident wave are shown in
Figure 4. (An s-polarized wave has its electric field perpendicular to the plane of incidence. In
this case, the electric field is polarized along the y-direction). The spectra consist of sharp
resonant features superimposed upon a smoothly varying background.
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Figure 4. (a) Transmission and (b) reflection spectra. The solid lines are for the photonic
crystal structure shown in the inset of Figure 1(a). The dashed lines are for a uniform dielectric
slab with a frequency dependent dielectric constant, as defined in Eq. (2), and a thickness of
0.5a. The incident wave is s-polarized, and has a parallel wavevector k = 0.2 . 27"/a along the x-
direction.

The background in Figure 4 resembles the Fabry-Perot oscillations when light interacts
with a uniform dielectric slab. To clearly see this, we fit the background to the spectra of a
uniform slab, which are shown as dashed lines in Figure 4. The uniform slab has the same
thickness of 0.5a as the crystal, and the light is incident with the same polarization at the same
parallel wavevector. The dielectric constant of the uniform slab Fl, as obtained by the fitting
procedure, represents an effective dielectric constant for the photonic crystal. Due to the
presence of the holes, such El is a slowly varying function of the frequency. At low frequencies,
the wavelength of incident light is large, and Fl for this polarization approaches the average
dielectric constant F,, of the crystal. At higher frequencies, as the incident wave probes more
details of the crystal structure, E, starts to deviate from Eavg. Within the frequency range in Figure
4, i.e. between 0.25 .27rc Ia and 0.60.27rc Ia, we have found that a frequency-dependent
dielectric constant

S(co) =-14.16. co2 + 15.18. -o+ 7.18 (2)

gives a very good fit of the background (Figure 4). The fit here corresponds to varying o from
10.62 at co = 0.25- 2)rcIa to 11.5 at co = 0.60.2,rc Ia. (As a comparison, the average dielectric
constant for the crystal is 10.6.) Therefore, except for the sharp resonance features, the
background of the spectra for the crystal can be adequately accounted for, using the model of a
uniform dielectric slab with a frequency-dependent dielectric function.

Line shape analysis

Superimposed upon the smooth background in the spectra for the crystals are sharp
resonant features. Such features come from the guided resonances of the slab. In most cases, the
line shapes for these resonances are asymmetric and rather complicated. Extensive experimental
and theoretical work has been performed for guided resonances in structures with one-
dimensionally periodic index variation. [24-31 ] For structures with two-dimensional periodicity,
these resonances have also been studied numerically using the Rigorous Coupled Wave Analysis

701



(RCWA) method [20]. and analytically using vector coupled-mode theory [13][15]. Here, we
would like to present a novel analysis from a time-domain perspective. We will observe the
important features in the time-domain signatures of the resonances. And, based upon the
observation, we will introduce a general and intuitive model to account for the underlying
physics.

The transmission and reflection spectra are related to the time-varying fields by a Fourier
transformation. It is therefore informative to examine the time dependency of the fields. As an
example, we show in Figure 5(a) the electric field amplitude at the transmission monitor point as
a function of time steps, for the calculation that gives the spectra shown in Figure 4. The time
sequence consists of two distinct stages: an initial pulse, and a tail of long decay.

The presence of these two stages indicates the existence of two pathways in the
transmission processes. The first pathway is a direct transmission process, where a portion of the
incident energy goes straight through the slab and generates the initial pulse. The Fourier
transformation of the initial pulse should account for the background in the transmission spectra.
The second pathway is an indirect transmission process, where the remaining portion of the
incident energy excites the guided resonances. The power in the resonances then decays slowly
out of the structure and produces the long decaying tail. By Fourier transforming the decaying
tail, we obtain the typical symmetric Lorentzian line shapes, as shown in Figure 5(b). The
analysis of the resonant line shape thus allows us to determine the quality factor Q of the
resonance. A few examples of the Q values for this structure are: 360 for the resonance at
co= 0.31. 2zc/a), and 2500 for the resonance at wo= 0.36. (27rc/a). The interference between
the direct and the indirect pathways, therefore, determine the transmission property. The same
observation can be made for the reflected amplitude as well. In solid state and atomic physics,
similar interference phenomena are commonly referred to as the Fano resonances [32]. Such
temporal interference phenomenon has also been analyzed previously for surface plasmon in
metallic thin films [33].

Taking into consideration the interference between these two pathways, we can construct
a simple and intuitive model that quantitatively explains the line shape. We express the
transmitted amplitude t, and the reflected amplitude r, as follows:

+f - Y (3)

t=t,,+f i.O09,+2

f - ow-)+y (4)

Here, t
d and rd are the direct transmission coefficients. o) and y are the center frequencies and the

widths of the Lorentzian from the resonance, and the factorf is the complex amplitude of the
resonant mode.

The plus/minus sign in Eq. (4) corresponds to resonant modes that are even/odd with
respect to the mirror plane parallel to the slab. We note that the Lorentzian functions in Eqs. (3)
and (4) correspond to the decaying amplitudes of the resonances to the reflection and
transmission sides of the slab, respectively. For an even mode, the decaying amplitudes to the
two sides of the slab are in phase, while for an odd mode the decaying amplitudes are 180-degree
out of phase. Thus, the signs in Eq. (4) are different for modes with different mirror-plane
symmetry properties.
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Figure 5. (a) The field amplitude at the monitor point as a function of time step, for the
same calculation as shown in Figure 4. Notice the existence of two separate stages: an initial
pulse, and a long decaying tail. (b) The Fourier transformation of the amplitude as shown in (a)
from time step 20,000 - 100,000. The spectral intensity exhibits Lorentzian line shapes.

The factorf can in fact be determined purely by energy conservation arguments. We note
that:

Id2 +142 =1_. (5)

Moreover, since rd and td are the transmission and reflection coefficients through an uniform slab
with the appropriate effective dielectric constant, we should have

k,12+k112 =1. (6)

Constraints (5) and (6) together uniquely determine the factorf. Plugging Eqs (3), (4),
and (6) into Eq. (5), we have, for any 0o:

_21:i2
(a-)0)0)2 +

= fl± J co arg(f)- arg(t, ± r, )- aco r

which can only be satisfied if:

f = - -(tý + rd, ). (8)

It is interesting to note here that the factor f is independent of the resonant line width y.
The parameters rd and td represent the background of the spectra. Therefore, as discussed

earlier in Section 111.2, such parameters can be determined by fitting the background to the
response spectra of a uniform slab, as:
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k 2 -k 2 " sin(k-:h)
+k•= 

(9)cos(k,',/,)-//i '+ ;,sin(-, ,h)'
" "2k:,kk :

I
t, . . .+.. (10)

cos(kh)-i . .sin(kh)- 2k:,`. i

for a plane wave with parallel wavevector k, incident from vacuum with a dielectric constant
g = 1. through a uniform dielectric slab with a thickness h and a dielectric constant e [34]. The
parameters k,) and k,1 in Equations (9) and (10) represent the wavevector components along the
--axis in the uniform slab, and are defined as:

k, = (12)
C

In obtaining Equations (9) and (10). we assume a positive frequency convention, in order to be
consistent with the Lorentzian functions that we have chosen for the resonance in Equation (3)
and (4).

We note, in particular, when ,;I = 0, and t,1 , from Eqs. (3), (4), and (8), the reflection
and the transmission coefficients become:

t= 4(13)
i(o)- W,,)+ Y'

and

= (14)i(Co - 0). )+ 7"

The line shapes thus become symmetric, and the structure behaves as a narrow-band reflector
with a Lorentzian reflectivity line shape. Previously, this scenario was noted by Wang and
Magnusson [26]. In the general case when i;, # 0, on the other hand, the line shape becomes
asymmetric. The transmission can vary from 0% to 100% within a very narrow frequency range.
A small shift in the resonant frequency may therefore lead to a drastic change in the response
function. This effect may be exploited in the design of optical sensors and switches.
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Figure 6. Comparison of theory and simulations. The empty circles in (a) and (b) are
numerical results taken from Figure 5(a), which corresponds to the two lowest-frequency
resonances. The solid lines are theoretical predictions from Eqs. (3), (8), (9) and (10). The
parameters of the theory for the two resonances are: (a) tou = 0.3076. 2,c/a,
y= 4.191.10-4 .2mcIa; (b) co, = 0.3601.2rrc/a, r= 7.2483.10-. -2MrIa.

We compare our theoretical predictions, as defined by Eqs. (3), (4), (8), (9) and (10), to
the numerical results for the first two resonances shown in Figure 5. (Both of these resonances
are even.) The frequency o and the width y of each resonance are determined from the
simulations. The only fitting parameter here is the effect dielectric constant Ej, which we take
from Equation (2). The theoretical results thus obtained are shown as solid lines in Figure 6. The
theory agrees completely with the numerical simulations.

Wavevector dependency of the resonances

To explore the wavevector and polarization dependency of the resonances, we performed
calculations at different values of ku, for an incident wave that is either s- or p- polarized. (The s-
polarization has the electric field perpendicular to the plane of incidence, while the p-polarization
has the magnetic field perpendicular to the plane of incidence). We determine the position and
the width of the resonances by Fourier transforming the decaying tail, as discussed earlier in
section 111.3. The results are summarized in Figure 7(a), where we show the frequencies of the
resonances as a function of k,. Incident waves with different polarizations excite different
resonances, since the two polarizations possess different symmetries with respect to yz-mirror
plane.

We note that, in Figure 7(a), some of the bands do not continue to the F point. In other
words, certain resonances at F do not couple to either polarization of the incident wave. A closer
examination of Figure 7(a) reveals that all these uncoupled resonances are singly degenerate.
Previously, this effect was observed experimentally by Pacradoni et al [14], and discussed
theoretically by Paddon and Young [13], and by Ochiai and Sakoda [25]

To further explore the wavevector dependency of the resonance, in Figure 7(b) we plot
the quality factors of the resonances as a function of ku, for the four lowest bands in Figure 7(a).
For bands with different symmetry properties, the behavior of the quality factors is very
different. The Q factors approach a constant as k. vanishes for the modes that connect to the
doubly degenerate states at F. For the modes that connect to the singly degenerate states, on the
other hand, the Q factors of the modes diverge. The calculation clearly demonstrates that the
symmetry of the modes can significantly influence the photon lifetime of the resonances.
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Figure 7. (a) The frequencies of the resonances as a function of wavevector, for the
structure as shown in the inset of Figure I a, as determincd from the time-domain simulations.
The solid circles correspond to the resonances that are excited by the p-polarized incident waves,
the empty circles correspond to the resonances that are excited by the s-polarized incident waves.
Notice that some of the bands do not continue to F, indicates the existence of uncoupled states at
F. (b) The quality factor as a function of wavevector, for the four lowest bands in (a). The solid
lines correspond to modes that connect to the doubly degenerate state at F point. The broken
lines correspond to modes that connect to the singly degenerate state at F point.
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Figure 8. The transmission spectra at normal incidence, for crystal slab structures with a
radius of (a) 0.05a; (b) 0.10a; (c) 0.15a, and (d) 0.20a. All the structures have a thickness of 0.5a,
and a dielectric constant of 12.
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Radius dependence of the resonance.

In addition to symmetry related effects, the lifetime of the resonances is also strongly
influenced by the radius of the holes. At the limit where the radius of the holes approaches zero,
the Q factor for all the resonances should diverge, since the resonances asymptotically become
real guided modes. To demonstrate this effect, we plot in Figure 8 the transmission spectra at
normal incidence for four different structures with the radius varying from 0.05a to 0.20a. The
spectral feature for the resonances indeed becomes sharper as the radius becomes smaller. For
the lowest-order resonances, the Q factor varies from approximately 5000 at r = 0.05a, to 213 at
r = 0.20a. At a larger radius, the Q-factor should be even lower.

The tunability of the quality factor with respect to the radius of the holes is important for
LED and laser applications. For photonic-crystal resonant-cavity LED structures, optimal
efficiency occurs when the line width of the resonances become comparable to the line width of
the emitter [35]. On the other hand, for a laser structure, a high-Q resonance is typically desirable
for threshold reduction. Therefore, as we have demonstrated in this paper, photonic crystal slab
structures are very versatile, and can be specifically tailored for different light emitting
applications.

SUMMARY

In summary, we present a three-dimensional frequency and time-domain analysis of
resonances in photonic crystal slab structures. These resonances are strongly confined with the
dielectric slab, and yet at the same time are coupled to radiation modes. For external light
incident upon these slabs, the transmission and reflection spectra are strongly modified by the
presence of these resonances. The line shapes exhibit complex asymmetric characteristics. We
show that all the complexities in the line shapes can be accounted for with a simple analytic
model describing the interference between direct transmission (or reflection), and the exponential
decaying amplitudes of the resonances. We also demonstrate that the quality factors of these
resonances are strongly influenced by the symmetry of the modes, and the radius of the holes.

ACKNOWLEDGMENT

This work was supported in part by the Material Research Science and Engineering
Center program of the National Science Foundation under Award No. DMR-9400334.

REFERENCES

1. S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and E. F. Schubert, Phys. Rev. Lett. 78, 3294-7
(1997).

2. S. G. Johnson, S. Fan, P. R. Villeneuve, and J. D. Joannopoulos and L. A. Kolodzjeski,
Phys. Rev. B 60, 5751-8 (1999).

3. 0. Painter, T. Vuckovic, and A. Scherer, J. Opt. Soc. Am. B 16, 275-85 (1999).
4. T. Baba, N. Fukaya, and J. Yonekura, Electron. Lett. 35, 654-5 (1999).
5. S. Kuchinsky, D. C. Allan, N. F. Borrelli, and J. -C. Cotteverte, Opt. Commun. 175, 147

(2000).
6. S. Y. Lin, E. Chow, S. G. Johnson, J. D. Joannopoulos, Opt. Lett. 25, 1297-9 (2000).

707



7. H. Benistry et al, Appl. Phys. Lett. 76, 531-3 (2000).
8. A. Chutinan and S. Noda, Phys. Rev. B 62, 4488-92 (2000).
9. M. Kanskar, P. Paddon, V. Pacradouni, R. Morin, A. Busch, J. F. Young, S. R. Johnson, J.

MacKenzie and T. Tiedje, Appl. Phys. Lett. 70, 1438-40 (1997).
10. P. R. Villeneuve, S. Fan, S. G. Johnson, and J. D. Joannopoulos, IEE Proceedings:

Optoelectronics 145, 384 (1998).
11. M. Boroditsky, R. Vrijen, T. F. Krauss, R. Coccioli, R. Bhat, and E. Yablonovitch, J.

Lighwave Technol. 17, 2096-112 (1999).
12. V. N. Astratov, I. S. Chushaw, R. M. Stevenson, D. M. Whittaker, M. S. Skolnick, T. F.

Krauss, and R. M. De la Rue, J. Lightwave Technol. 17, 2050-8 (1999).
13. P. Paddon andJ. F. Young, Phys. Rev. B 61, 2090-2101 (2000).
14. V. Pacardoni, W. J. Mandeville, A. R. Crown, P. Paddon, J. F. Young and S. R. Johnson,

Phys. Rev. B. 62, 4204-7 (2000).
15. A. R. Cowan, P. Paddon, V. Pacradouni, and J. F. Young, J. Opt. Soc. Am. A 16, 1160-70

(2001).
16. A. A. Erchak, D. J. Ripin, S. Fan, J. D. Joannopoulos, E. P. Ippen, G. S. Petrich, and L. A.

Kolodzjeski, Appl. Phys. Lett. 78,563-5 (2001).
17. M. Meier, A. Mekis, A. Dodabalapur, A. Timko, R. E. Slusher, J. D. Joannopoulos, Appl.

Phys. Lett. 74, 7-9 (1999).
18. M. Imada, S. Noda, A. Chutinan, T. Tokuda, M. Murata and G. Sasaki, Appl. Phys. Lett. 75,

316-8 (1999)
19. A. Mekis, A. Dodabalapur, R. E. Slusher, and J. D. Joannopoulos, Opt. Lett. 25, 942-4

(2000).
20. S. Peng and G. M. Morris, J. Opt. Soc. Am. A 13, 993-1005 (1996).
21. J. D. Joannopoulos, R. D. Meade and J. N. Winn, "Photonic crystals: molding the flow of

light" (Princeton University Press, Princeton, 1995).
22. For a review on finite difference time domain methods, see K. S. Kunz and R. J. Luebbers,

"The finite difference time domain methods for electromagnetics", (CRC press, Boca Raton,
1993); A. Taflove and S. C. Hagness, "Computational Electrodynamics: the finite-difference
time-domain method", (Artech House, Boston, 2000).

23. J. P. Berenger, J. Computational Physics 114, 185-200 (1994).
24. S. S. Wang and R. Magnusson, Appl. Phys. Lett. 61, 1022-24 (1992).
25. T. Ochiai and K. Sakoda, Phys. Rev. B 63, 125107-1 (2001).
26. S. S. Wang and R. Magnusson, Opt. Lett. 19, 919-921 (1994).
27. A. Sharon, D. Rosenblatt, A. A. Friesem, Opt. Lett. 21, 1564-6 (1996).
28. T. Tamir and S. Zhang, J. Opt. Soc. Am A 14, 1607-1616 (1997)
29. S. M. Norton, T. Erdogan and G. M. Morris, J. Opt. Soc. Am. A 14, 629-639 (1997).
30. S. M. Norton, G. M. Morris and T. Erdogan, J. Opt. Soc. Am A 15,464-472 (1998).
31. G. Levy-Yurista and A. A. Friesem, Appl. Phys. Lett. 77, 1596-1598 (2000).
32. U. Fano, Phys. Rev. 124, 1866-77 (1961).
33. R. V. Andaloro, H. J. Simon, and R. T. Deck, Appl. Opt. 33, 6340-7 (1994).
34. P. Yeh, "Optical waves in layered media", (John Wiley & Sons, New York, 1988).
35. S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, IEEE J. Quantum Electron. 36, 1123-30

(2000).

708


